Representing Relationships
Lesson 4.1

Vocabulary:

Linear Equation – an equation with a graph that is a straight line

Examples

The table shows the number of liters in quarts of liquid.

<table>
<thead>
<tr>
<th>Quarts, q</th>
<th>Liters, ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>2.85</td>
</tr>
<tr>
<td>4</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>4.75</td>
</tr>
</tbody>
</table>

1. Write an equation to find the number of liters in any number of quarts. Describe the relationship in words.

 a) Find the rate of change or slope for the table.

 * Choose any 2 points for slope formula *
 or

 * Find the pattern in the table *

 \[
 \frac{l}{q} = \frac{1.9 - 0.95}{2 - 1} = \frac{0.95}{1} = 0.95
 \]

 There are 0.95 liters for each quart.

 b) Explain what the slope represents.
c) Write an equation in slope-intercept form \(y = mx + b \).

\[\ell = 0.95q. \]

* \(b \) represents liters at 0 quarts *

About how many liters are in 8 quarts?

a) Write the equation from the table.

\[\ell = 0.95q \]

b) Substitute the given value and multiply.

\[\ell = 0.95(8) \]

\[\ell = 7.6 \]

There are about 7.6 liters in 8 quarts.
2. The total cost of tickets to the school play is shown in the table.

<table>
<thead>
<tr>
<th>Number of Tickets, t</th>
<th>Total Cost ($) , c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.50</td>
</tr>
<tr>
<td>2</td>
<td>9.00</td>
</tr>
<tr>
<td>3</td>
<td>13.50</td>
</tr>
<tr>
<td>4</td>
<td>18.00</td>
</tr>
</tbody>
</table>

a. Write an equation to find the total cost of any number of tickets. Describe the relationship in words.

a) Find the rate of change or slope for the table.

\[
\frac{c}{t} = \frac{9.00 - 4.50}{2 - 1} = \frac{4.5}{1} = 4.5
\]

b) Explain what the slope represents.

Each ticket costs $4.50.

c) Write an equation in slope-intercept form \((y = mx + b)\).

\[c = 4.5t\]

* b represents the cost of 0 tickets *
b. Use the equation to find the cost of 15 tickets.

\[c = 4.5t \]

\[c = 4.5(15) \]

\[c = $67.50 \]

\[\text{Got It?} \quad \text{Do these problems to find out.} \]

The table shows the total number of text messages that Brad sent over 4 days. (Examples 1 and 2)

\[\begin{array}{c|cccc}
\text{Number of Days, } d & 1 & 2 & 3 & 4 \\
\hline
\text{Total Messages, } m & 50 & 100 & 150 & 200 \\
\end{array} \]

a. Write an equation to find the total number of messages sent in any number of days. Describe the relationship in words.

\[50\% = 50 \quad 50 \text{ messages per day} \quad m = 50d \]

b. Use the equation to find how many text messages Brad would send in 30 days.

\[m = 50d \]

\[= 50(30) \]

\[= 1500 \]
Examples

The total distance Marlon ran in one week is shown in the graph.

3. Write an equation to find the number of miles run \(y \) after any number of days \(x \).

![Graph showing total distance run over time]

a) Find the rate of change or slope for the table.

* Choose any 2 points for slope formula *

or

* Find the rise and run in the graph *

\[m = \frac{14 - 7}{4 - 2} \]

\[m = \frac{7}{2} \]

\[m = 3.5 \]

b) Write an equation in slope-intercept form \((y = mx + b) \).

\[y = 3.5x \]

* \(b \) represents the miles for 0 days *
How many miles will Marlon run after 2 weeks?

a) Write the equation from the table.

\[y = 3.5x \]

b) Substitute the given value and multiply.

\[y = 3.5(14) \]

\[y = 49 \]

Marlon will run 49 miles in 2 weeks.

Got It? Do these problems to find out.

The number of trees saved by recycling paper is shown.

c. Write an equation to find the total number of trees \(y \) that can be saved for any number of tons of paper \(x \).

\[\frac{34 - 17}{2 - 1} = \frac{17}{1} = 17 \]

\[y = 17x \]

d. Use the equation to find how many trees could be saved if 500 tons of paper are recycled.

\[y = 17(500) \]

\[= 8,500 \text{ trees} \]
4. **Financial Literacy** Paul earns $7.50 an hour working at a grocery store.

Write an equation to find the amount of money Paul earned m for any number of hours h.

\[m = 7.5h \]

Make a table to find his earnings if he works 5, 6, 7, or 8 hours. Then graph the ordered pairs.

<table>
<thead>
<tr>
<th>h</th>
<th>$7.5h$</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.5(5)</td>
<td>37.50</td>
</tr>
<tr>
<td>6</td>
<td>7.5(6)</td>
<td>45.00</td>
</tr>
<tr>
<td>7</td>
<td>7.5(7)</td>
<td>52.50</td>
</tr>
<tr>
<td>8</td>
<td>7.5(8)</td>
<td>60.00</td>
</tr>
</tbody>
</table>

[Graph showing earnings vs. hours]
A store receives an average of 7 new movies per week.

(Examples 5 and 6) \[y = mx \]

a. Write an equation to find the number of new movies \(m \) in any number of weeks \(w \).

b. Make a table to find the number of new movies received in 4, 5, 6, or 7 weeks. Then graph the ordered pairs.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>(7w)</td>
</tr>
<tr>
<td>4</td>
<td>(7(4))</td>
</tr>
<tr>
<td>5</td>
<td>(7(5))</td>
</tr>
<tr>
<td>6</td>
<td>(7(6))</td>
</tr>
<tr>
<td>7</td>
<td>(7(7))</td>
</tr>
</tbody>
</table>